Bernstein-Polynomials-Based Highly Accurate Methods for One-Dimensional Interface Problems
نویسندگان
چکیده
منابع مشابه
Bernstein-Polynomials-Based Highly Accurate Methods for One-Dimensional Interface Problems
A new numerical method based on Bernstein polynomials expansion is proposed for solving onedimensional elliptic interface problems. Both Galerkin formulation and collocation formulation are constructed to determine the expansion coefficients. In Galerkin formulation, the flux jump condition can be imposed by the weak formulation naturally. In collocation formulation, the results obtained by B-p...
متن کاملan approximation method for numerical solution of multi-dimensional feedback delay fractional optimal control problems by bernstein polynomials
in this paper we present a new method for solving fractional optimal control problems with delays in state and control. this method is based upon bernstein polynomial basis and using feedback control. the main advantage of using feedback or closed-loop controls is that they can monitor their effect on the system and modify the output accordingly. in this work, we use bernstein polynomials to tr...
متن کاملAn Adaptive Physics-Based Method for the Solution of One-Dimensional Wave Motion Problems
In this paper, an adaptive physics-based method is developed for solving wave motion problems in one dimension (i.e., wave propagation in strings, rods and beams). The solution of the problem includes two main parts. In the first part, after discretization of the domain, a physics-based method is developed considering the conservation of mass and the balance of momentum. In the second part, ada...
متن کاملA solution for Volterra Integral Equations of the First Kind Based on Bernstein Polynomials
In this paper, we present a new computational method to solve Volterra integral equations of the first kind based on Bernstein polynomials. In this method, using operational matrices turn the integral equation into a system of equations. The computed operational matrices are exact and new. The comparisons show this method is acceptable. Moreover, the stability of the proposed method is studied.
متن کاملHighly Accurate Numerical Simulations of Pulsating One-Dimensional Detonations
A novel, highly accurate numerical scheme based on shock-fitting coupled with high order spatial and temporal discretization is applied to a classical unsteady detonation problem to generate solutions with unprecedented accuracy. The one-dimensional reactive Euler equations for a calorically perfect mixture of ideal gases whose reaction is described by single-step irreversible Arrhenius kinetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2012
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2012/859315